Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Infect Genet Evol ; 117: 105545, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160879

RESUMO

Staphylococcus aureus are gram-positive bacteria responsible for a wide array of diseases, ranging from skin and soft tissue infections to more chronic illnesses such as toxic shock syndrome, osteomyelitis, and endocarditis. Vancomycin is currently one of the most effective antibiotics available in treating patients infected with methicillin-resistant S. aureus (MRSA), however the emergence of vancomycin-resistant S. aureus (VRSA), and more commonly vancomycin-intermediate S. aureus (VISA), threaten the future efficacy of vancomycin. Intermediate resistance to vancomycin occurs due to mutations within the loci of Staphylococcal genes involved in cell wall formation such as rpoB, graS, and yycG. We hypothesized the VISA phenotype may also arise as a result of the natural stress occurring within S. aureus biofilms, and that this phenomenon is mediated by the RecA/SOS response. Wildtype and recA null mutant/lexAG94E strains of S. aureus biofilms were established in biofilm microtiter assays or planktonic cultures with or without the addition of sub-inhibitory concentrations of vancomycin (0.063 mg/l - 0.25 mg/L ciprofloxacin, 0.5 mg/l vancomycin). Efficiency of plating techniques were used to quantify the subpopulation of biofilm-derived S. aureus cells that developed vancomycin-intermediate resistance. The results indicated that a greater subpopulation of cells from wildtype biofilms (4.16 × 102 CFUs) emerged from intermediate-resistant concentrations of vancomycin (4 µg/ml) compared with the planktonic counterpart (1.53 × 101 CFUs). Wildtype biofilms (4.16 × 102 CFUs) also exhibited greater resistance to intermediate-resistant concentrations of vancomycin compared with strains deficient in the recA null mutant (8.15 × 101 CFUs) and lexA genes (8.00 × 101 CFUs). While the VISA phenotype would be an unintended consequence of genetic diversity and potentially gene transfer in the biofilm setting, it demonstrates that mutations occurring within biofilms allow for S. aureus to adapt to new environments, including the presence of widely used antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Vancomicina/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus Resistente à Vancomicina , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana
2.
ACS Infect Dis ; 9(11): 2133-2140, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37910786

RESUMO

The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Células Endoteliais , Ácidos Teicoicos/metabolismo , Receptores Depuradores/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
3.
Mol Microbiol ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898563

RESUMO

Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.

5.
Microlife ; 4: uqad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223729

RESUMO

The stringent response and its signalling nucleotides, pppGpp and ppGpp, have been the subject of intense research since the discovery of (p)ppGpp in 1969. Recent studies have revealed that the downstream events that follow (p)ppGpp accumulation vary among species. Consequently, the stringent response as initially characterized in Escherichia coli largely differs from the response in Firmicutes (Bacillota), wherein synthesis and degradation of the messengers (p)ppGpp are orchestrated by the bifunctional Rel enzyme with synthetase and hydrolase activity and the two synthetases SasA/RelP and SasB/RelQ. Here we will summarize recent studies supporting the role of (p)ppGpp in the development of antibiotic resistance and tolerance as well as survival under adverse environmental conditions in Firmicutes. We will also discuss the impact of elevated (p)ppGpp levels on the development of persister cells and the establishment of persistent infections. (p)ppGpp levels are usually tightly controlled to allow optimal growth under non-stressed conditions. Upon the onset of certain 'stringent conditions' the sudden increase in (p)ppGpp levels limits growth while exerting protective effects. In Firmicutes, the (p)ppGpp-mediated restriction of GTP accumulation is one major mechanism of protection and survival under stresses such as antibiotic exposure.

6.
J Invest Dermatol ; 143(7): 1257-1267.e10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36736996

RESUMO

Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.


Assuntos
Interleucina-17 , Staphylococcus aureus , Camundongos , Animais , Camundongos Knockout , Pele , Queratinócitos , Camundongos Endogâmicos C57BL
7.
Front Cell Infect Microbiol ; 12: 1062329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467739

RESUMO

Staphylococci are commensals of human skin and mucous membranes, but some species can also cause serious infections. Host niches during both colonization and infection differ greatly and are characterized by specific environmental conditions (pH, temperature, oxygen, nutrient availability, and microbiota) that can affect gene expression and virulence of microbes. To successfully occupy extremely different habitats at different anatomical sites, Staphylococci are equipped with a variety of regulatory elements that allow specific adaptation to the changing environments. Not surprisingly, gene expression in vivo can be significantly different from the expression pattern observed in vitro. Niche specific stimuli that influence the bacterial ability to either cause infection or maintain colonization are only partially understood. Here, we describe habitat specific conditions and discuss the available literature analyzing staphylococcal gene expression, focusing on Staphylococcus aureus and S. epidermidis during colonization of the nose and skin.


Assuntos
Infecções Estafilocócicas , Staphylococcus , Humanos , Staphylococcus/genética , Transcriptoma , Staphylococcus epidermidis/genética , Staphylococcus aureus/genética
8.
Viruses ; 14(11)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36366569

RESUMO

Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation.


Assuntos
Toxinas Bacterianas , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Infecções Estafilocócicas/microbiologia , Estágios do Ciclo de Vida , Mamíferos
9.
Front Microbiol ; 13: 896311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558117

RESUMO

The virulence factors of the opportunistic human pathogen Staphylococcus epidermidis have been a main subject of research. In contrast, limited information is available on the mechanisms that allow the bacterium to accommodate to the conditions during carriage, a prerequisite for pathogenicity. Here, we tested the hypothesis that the adaptation of S. epidermidis at different anatomical sites is reflected by differential gene regulation. We used qPCR to profile S. epidermidis gene expression in vivo in nose and skin swabs of 11 healthy individuals. Despite some heterogeneity between individuals, significant site-specific differences were detected. For example, expression of the S. epidermidis regulator sarA was found similarly in the nose and on the skin of all individuals. Also, genes encoding colonization and immune evasion factors (sdrG, capC, and dltA), as well as the sphingomyelinase encoding gene sph, were expressed at both anatomical sites. In contrast, expression of the global regulator agr was almost inactive in the nose but readily present on the skin. A similar site-specific expression profile was also identified for the putative chitinase-encoding SE0760. In contrast, expression of the autolysine-encoding gene sceD and the wall teichoic acid (WTA) biosynthesis gene tagB were more pronounced in the nose as compared to the skin. In summary, our analysis identifies site-specific gene expression patterns of S. epidermidis during colonization. In addition, the observed expression signature was significantly different from growth in vitro. Interestingly, the strong transcription of sphingomyelinase together with the low expression of genes encoding the tricarboxylic acid cycle (TCA) suggests very good nutrient supply in both anatomical niches, even on the skin where one might have suspected a rather lower nutrient supply compared to the nose.

10.
J Thromb Haemost ; 20(6): 1464-1475, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303391

RESUMO

BACKGROUND: Toxins are key virulence determinants of pathogens and can impair the function of host immune cells, including platelets. Insights into pathogen toxin interference with platelets will be pivotal to improve treatment of patients with bacterial bloodstream infections. MATERIALS AND METHODS: In this study, we deciphered the effects of Staphylococcus aureus toxins α-hemolysin, LukAB, LukDE, and LukSF on human platelets and compared the effects with the pore forming toxin pneumolysin of Streptococcus pneumoniae. Activation of platelets and loss of platelet function were investigated by flow cytometry, aggregometry, platelet viability, fluorescence microscopy, and intracellular calcium release. Thrombus formation was assessed in whole blood. RESULTS: α-hemolysin (Hla) is known to be a pore-forming toxin. Hla-induced calcium influx initially activates platelets as indicated by CD62P and αIIbß3 integrin activation, but also induces finally alterations in the phenotype of platelets. In contrast to Hla and pneumolysin, S. aureus bicomponent pore-forming leukocidins LukAB, LukED, and LukSF do not bind to platelets and had no significant effect on platelet activation and viability. The presence of small amounts of Hla (0.2 µg/ml) in whole blood abrogates thrombus formation indicating that in systemic infections with S. aureus the stability of formed thrombi is impaired. Damage of platelets by Hla was not neutralized by intravenous immune globulins. CONCLUSION: Our findings might be of clinical relevance for S. aureus induced endocarditis. Stabilizing the aortic-valve thrombi by inhibiting Hla-induced impairment of platelets might reduce the risk for septic (micro-)embolization.


Assuntos
Infecções Estafilocócicas , Trombose , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Cálcio , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Humanos , Leucocidinas/metabolismo , Staphylococcus aureus
11.
Front Microbiol ; 12: 728989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621255

RESUMO

The healthy human epidermis provides physical protection and is impenetrable for pathogenic microbes. Nevertheless, commensal and pathogen bacteria such as Staphylococcus aureus are able to colonize the skin surface, which may subsequently lead to infection. To identify and characterize regulatory elements facilitating adaptation of S. aureus to the human skin environment we used ex vivo tissue explants and quantified S. aureus gene transcription during co-culture. This analysis provided evidence for a significant downregulation of the global virulence regulator agr upon initial contact with skin, regardless of the growth phase of S. aureus prior to co-culture. In contrast, the alternative sigma factor B (sigB) and the antimicrobial peptide-sensing system (graRS) were expressed during early colonization. Consistently, sigB target genes such as the clumping factor A (clfA) and fibrinogen and fibronectin binding protein A (fnbA) were strongly upregulated upon skin contact. At later timepoints of the adhesion process, wall teichoic acid (WTA) synthesis was induced. Besides the expression of adhesive molecules, transcription of molecules involved in immune evasion were increased during late colonization (staphylococcal complement inhibitor and staphylokinase). Similar to nasal colonization, enzymes involved in cell wall metabolism (sceD and atlA) were highly transcribed. Finally, we detected a strong expression of proteases from all three catalytic classes during the entire colonization process. Taken together, we here present an ex vivo skin colonization model that allows the detailed characterization of the bacterial adaptation to the skin environment.

12.
mSystems ; 6(4): e0054921, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427514

RESUMO

During antibiotic persistence, bacterial cells become transiently tolerant to antibiotics by restraining their growth and metabolic activity. Detailed molecular characterization of antibiotic persistence is hindered by low count of persisting cells and the need for their isolation. Here, we used sustained addition of stable isotope-labeled lysine to selectively label the proteome during hipA-induced persistence and hipB-induced resuscitation of Escherichia coli cells in minimal medium after antibiotic treatment. Time-resolved, 24-h measurement of label incorporation allowed detection of over 500 newly synthesized proteins in viable cells, demonstrating low but widespread protein synthesis during persistence. Many essential proteins were newly synthesized, and several ribosome-associated proteins such as RaiA and Sra showed high synthesis levels, pointing to their roles in maintenance of persistence. At the onset of resuscitation, cells synthesized the ribosome-splitting GTPase HflX and various ABC transporters, restored translation machinery, and resumed metabolism by inducing glycolysis and biosynthesis of amino acids. IMPORTANCE While bactericidal antibiotics typically require actively growing cells to exploit their function, persister cells are slowly replicating which makes them tolerant to the lethal action of antimicrobials. Here, we used an established in vitro model of bacterial persistence based on overexpression of the paradigm toxin-antitoxin (TA) system hipA/hipB to devise a generic method for temporal analysis of protein synthesis during toxin-induced persistence and antitoxin-mediated resuscitation. Our time-resolved, 24-h measurement of label incorporation demonstrated low but widespread protein synthesis during persistence. At the onset of resuscitation, cells restored translation machinery and resumed metabolism by inducing glycolysis and biosynthesis of amino acids. Our study provides the first global analysis of protein synthesis in persisting and resuscitating bacterial cells, and as such, presents an unprecedented resource to study the processes governing antibiotic persistence.

13.
Microb Physiol ; 31(2): 109-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34126612

RESUMO

As an opportunistic pathogen of humans and animals, Staphylococcus aureus asymptomatically colonizes the nasal cavity but is also a leading cause of life-threatening acute and chronic infections. The evolution of S. aureus resulting from short- and long-term adaptation to diverse hosts is tightly associated with mobile genetic elements. S. aureus strains can carry up to four temperate phages, many of which possess accessory genes encoding staphylococcal virulence factors. More than 90% of human nasal isolates of S. aureus have been shown to carry Sa3int phages, whereas invasive S. aureus isolates tend to lose these phages. Sa3int phages integrate as prophages into the bacterial hlb gene, disrupting the expression of the sphingomyelinase Hlb, an important virulence factor under specific infection conditions. Virulence factors encoded by genes carried by Sa3int phages include staphylokinase, enterotoxins, chemotaxis-inhibitory protein, and staphylococcal complement inhibitor, all of which are highly human specific and probably essential for bacterial survival in the human host. The transmission of S. aureus from humans to animals is strongly correlated with the loss of Sa3int phages, whereas phages are regained once a strain is transmitted from animals to humans. Thus, both the insertion and excision of prophages may confer a fitness advantage to this bacterium. There is also growing evidence that Sa3int phages may perform "active lysogeny," a process during which prophages are temporally excised from the chromosome without forming intact phage particles. The molecular mechanisms controlling the peculiar life cycle of Sa3int phages remain largely unclear. Nevertheless, their regulation is likely fine-tuned to ensure bacterial survival within different hosts.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Animais , Bacteriófagos/genética , Humanos , Lisogenia , Prófagos/genética , Staphylococcus aureus/genética
14.
Sci Rep ; 11(1): 9651, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958641

RESUMO

Stapylococcus aureus colonises the nose of healthy individuals but can also cause a wide range of infections. Amino acid (AA) synthesis and their availability is crucial to adapt to conditions encountered in vivo. Most S. aureus genomes comprise all genes required for AA biosynthesis. Nevertheless, different strains require specific sets of AAs for growth. In this study we show that regulation inactivates pathways under certain conditions which result in these observed auxotrophies. We analyzed in vitro and modeled in silico in a Boolean semiquantitative model (195 nodes, 320 edges) the regulatory impact of stringent response (SR) on AA requirement in S. aureus HG001 (wild-type) and in mutant strains lacking the metabolic regulators RSH, CodY and CcpA, respectively. Growth in medium lacking single AAs was analyzed. Results correlated qualitatively to the in silico predictions of the final model in 92% and quantitatively in 81%. Remaining gaps in our knowledge are evaluated and discussed. This in silico model is made fully available and explains how integration of different inputs is achieved in SR and AA metabolism of S. aureus. The in vitro data and in silico modeling stress the role of SR and central regulators such as CodY for AA metabolisms in S. aureus.


Assuntos
Aminoácidos Essenciais/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Aminoácidos Essenciais/biossíntese , Aminoácidos Essenciais/deficiência , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Modelos Biológicos , Mutação , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
15.
Virulence ; 12(1): 1186-1198, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843450

RESUMO

A large proportion of clinical S. aureus isolates that carry an inactive Agr system are associated with persistent infection that is difficult to treat. Once S. aureus is inside the bloodstream, it can cross the endothelial barrier and invade almost every organ in the human body. Endothelial cells can either be lysed by this pathogen or they serve as a niche for its intracellular long-term survival. Following phagocytosis, several vesicles such as phagosomes and autophagosomes, target intracellular S. aureus for elimination. S. aureus can escape from these vesicles into the host cytoplasm through the activation of phenol-soluble modulins (PSMs) αß. Thereafter, it replicates and lyses the host cell to disseminate to adjacent tissues. Herein we demonstrate that staphylococcal strains which lack the expression of PSMs employ an alternative pathway to better persist within endothelial cells. The intracellular survival of S. aureus is associated with the co-localization of the autophagy marker LC3. In cell culture infection models, we found that the absence of psmαß decreased the host cell lysis and increased staphylococcal long-term survival. This study explains the positive selection of agr-negative strains that lack the expression of psmαß in chronic infection due to their advantage in surviving and evading the clearance system of the host.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Toxinas Bacterianas , Células Endoteliais , Humanos , Infecção Persistente , Fagossomos
16.
Cell Host Microbe ; 29(6): 930-940.e4, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33852876

RESUMO

Staphylococcus aureus commonly infects the skin, but the host-pathogen interactions controlling bacterial growth remain unclear. S. aureus virulence is regulated by the Agr quorum-sensing system that controls factors including phenol-soluble modulins (PSMs), a group of cytotoxic peptides. We found a differential requirement for Agr and PSMα for pathogen growth in the skin. In neutrophil-deficient mice, S. aureus growth on the epidermis was unaffected, but the pathogen penetrated the dermis through mechanisms that require PSMα. In the dermis, pathogen expansion required Agr in wild-type mice, but not in neutrophil-deficient mice. Agr limited oxidative and non-oxidative killing in neutrophils by inhibiting pathogen late endosome localization and promoting phagosome escape. Unlike Agr, the SaeR/S virulence program was dispensable for growth in the epidermis and promoted dermal pathogen expansion independently of neutrophils. Thus, S. aureus growth and invasion are differentially regulated with Agr limiting intracellular killing within neutrophils to promote pathogen expansion in the dermis and subcutaneous tissue.


Assuntos
Proteínas de Bactérias/metabolismo , Neutrófilos/fisiologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Transativadores/metabolismo , Virulência , Animais , Toxinas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas Quinases/metabolismo , Percepção de Quorum , Fatores de Transcrição/metabolismo
17.
Genes (Basel) ; 13(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35052374

RESUMO

Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Transdução de Sinais/genética , Staphylococcus aureus/genética , Animais , Humanos
18.
PLoS Genet ; 16(12): e1009282, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378356

RESUMO

The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1-4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Staphylococcus aureus/genética , Estresse Fisiológico , Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Staphylococcus aureus/metabolismo
19.
Free Radic Biol Med ; 161: 351-364, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33144262

RESUMO

Slow growing stationary phase bacteria are often tolerant to multiple stressors and antimicrobials. Here, we show that the pathogen Staphylococcus aureus develops a non-specific tolerance towards oxidative stress during the stationary phase, which is mediated by the nucleotide second messenger (p)ppGpp. The (p)ppGpp0 mutant was highly susceptible to HOCl stress during the stationary phase. Transcriptome analysis of the (p)ppGpp0 mutant revealed an increased expression of the PerR, SigB, QsrR, CtsR and HrcA regulons during the stationary phase, indicating an oxidative stress response. The (p)ppGpp0 mutant showed a slight oxidative shift in the bacillithiol (BSH) redox potential (EBSH) and an impaired H2O2 detoxification due to higher endogenous ROS levels. The increased ROS levels in the (p)ppGpp0 mutant were shown to be caused by higher respiratory chain activity and elevated total and free iron levels. Consistent with these results, N-acetyl cysteine and the iron-chelator dipyridyl improved the growth and survival of the (p)ppGpp0 mutant under oxidative stress. Elevated free iron levels caused 8 to 31-fold increased transcription of Fe-storage proteins ferritin (ftnA) and miniferritin (dps) in the (p)ppGpp0 mutant, while Fur-regulated uptake systems for iron, heme or siderophores (efeOBU, isdABCDEFG, sirABC and sstADBCD) were repressed. Finally, the susceptibility of the (p)ppGpp0 mutant towards the bactericidal action of the antibiotics ciprofloxacin and tetracycline was abrogated with N-acetyl cysteine and dipyridyl. Taken together, (p)ppGpp confers tolerance to ROS and antibiotics by down-regulation of respiratory chain activity and free iron levels, lowering ROS formation to ensure redox homeostasis in S. aureus.


Assuntos
Guanosina Pentafosfato , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Peróxido de Hidrogênio , Ferro/metabolismo , Oxirredução , Estresse Oxidativo , Staphylococcus aureus/metabolismo
20.
Front Microbiol ; 11: 575882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072039

RESUMO

The stringent response is characterized by the synthesis of the alarmone (p)ppGpp. The phenotypic consequences resulting from (p)ppGpp accumulation vary among species, and for several pathogenic bacteria, it has been shown that the activation of the stringent response strongly affects biofilm formation and maintenance. In Staphylococcus aureus, (p)ppGpp can be synthesized by the RelA/SpoT homolog Rel upon amino acid deprivation or by the two small alarmone synthetases RelP and RelQ under cell wall stress. We found that relP and relQ increase biofilm formation under cell wall stress conditions induced by a subinhibitory vancomycin concentration. However, the effect of (p)ppGpp on biofilm formation is independent of the regulators CodY and Agr. Biofilms formed by the strain HG001 or its (p)ppGpp-defective mutants are mainly composed of extracellular DNA and proteins. Furthermore, the induction of the RelPQ-mediated stringent response contributes to biofilm-related antibiotic tolerance. The proposed (p)ppGpp-inhibiting peptide DJK-5 shows bactericidal and biofilm-inhibitory activity. However, a non-(p)ppGpp-producing strain is even more vulnerable to DJK-5. This strongly argues against the assumption that DJK-5 acts via (p)ppGpp inhibition. In summary, RelP and RelQ play a major role in biofilm formation and maintenance under cell wall stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...